For wire conductor size we have AWG (which is American Wiring Guide) and metric standarts (SI). For cable size you need to have a look at the cable manufacturers’ catalogues.
Here you may have the table for conversion between these tables;
| AWG | SI ($latex mm^2$) |
|---|---|
| 6⁄0 | 170.30 |
| 5⁄0 | 135.10 |
| 4⁄0 | 107 |
| 3⁄0 | 85.0 |
| 2⁄0 | 67.4 |
| 1⁄0 | 53.5 |
| 1 | 42.4 |
| 2 | 33.6 |
| 3 | 26.7 |
| 4 | 21.1 |
| 5 | 16.8 |
| 6 | 13.3 |
| 7 | 10.5 |
| 8 | 8.36 |
| 9 | 6.63 |
| 10 | 5.26 |
| 11 | 4.17 |
| 12 | 3.31 |
| 13 | 2.62 |
| 14 | 2.08 |
| 15 | 1.65 |
| 16 | 1.31 |
| 17 | 1.04 |
| 18 | 0.823 |
| 19 | 0.653 |
| 20 | 0.518 |
| 21 | 0.410 |
| 22 | 0.326 |
| 23 | 0.258 |
| 24 | 0.205 |
| 25 | 0.162 |
| 26 | 0.129 |
| 27 | 0.102 |
| 28 | 0.0810 |
| 29 | 0.0642 |
| 30 | 0.0509 |
| 31 | 0.0404 |
| 32 | 0.0320 |
| 33 | 0.0254 |
| 34 | 0.0201 |
| 35 | 0.0160 |
| 36 | 0.0127 |
| 37 | 0.0100 |
| 38 | 0.00797 |
| 39 | 0.00632 |
| 40 | 0.00501 |
And from $latex mm^2 $ to AWG we don’t have a directly conversion since AWG don’t have something like 30.5 or 10.2, but we can estimate how near they are to each other for example taking AWG20 as 0.5 $latex mm^2 $ does not seem wrong. According to those estimations we can have a chart like this;
| SI ($latex mm^2$) | AWG | DEVIATION ($latex mm^2$) | DEVIATION (%) |
| 0,5 | 20 | +0,018 | 3,6 |
| 0,75 | 18 | +0,073 | 9,73 |
| 1 | 17 | +0,04 | 4 |
| 1,5 | 15 | +0,15 | 1 0 |
| 2,5 | 13 | +0,12 | 4,8 |
| 4 | 11 | +0,17 | 4,25 |
| 6 | 9 | +0,63 | 10,5 |
| 10 | 7 | +0,5 | 5 |
| 16 | 5 | +0,8 | 5 |
| 25 | 3 | +1,7 | 6,8 |
| 35* | 2 | –1,4* | 4* |
| 50 | 1⁄0 | +3,5 | 7 |
| 70* | 2⁄0 | -2,6* | 3,71* |
| 95 | $latex \frac {4}{0}$ | +12 | 11 |
$latex *$ These ones may be a little smaller size or deviation from the original size may be higher so be careful while choosing these ones. These are not direct or near conversions.